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Georgia Ins t i t u t e  of Technology 

and P. M..Goorjian 

Army A i r  Mobility R.  & D. Lab. - Ames Directorate 

SUMMARY 

A theory for  the optimum performance of a rotor hovering out of ground 

ef fec t  i s  developed. The performance problem i s  formulated using general 

momentum theory for  an in f in i t e ly  bladed rotor ,  and the e f fec t  of a f i n i t e  

number of blades i s  estimated. The analysis takes advantage of the fac t  that  

a simple re la t ion  ex is t s  between the r ad ia l  distributions of s t a t i c  pressure 

and angular velocity i n  the ultimate wake, far downstream of the rotor ,  since 

the r ad ia l  velocity vanishes there. This re la t ion  permits the establishment 

of an optimum performance c r i te r ion  i n  terms of the ultimate wake veloci t ies  

by introducing a small l oca l  perturbation of the rotat ional  velocity and 

requiring the resul t ing r a t i o  of th rus t  and power changes t o  be independent 

of the radial location of the perturbation. This analysis f i l l y  accounts for  

the changes i n  s t a t i c  pressure dis t r ibut ion and ax ia l  velocity dis t r ibut ion 

throughout the wake as the r e su l t  of the loca l  perturbation of the rotat ional  

velocity component. This improvement over ea r l i e r  theories is  shown t o  have 

f i n i t e  contributions t o  the optimum distributions of circulation and inflow 

as well as t o  the rotor performance. 

The veloci t ies  i n  the ultimate wake are re la ted t o  the circulation and 

inflow distributions a t  the rotor  disk using a constant contraction r a t i o  for  
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the  wake. Optimum dis t r ibut ions of the circulation and the inflow, together 

with the performance character is t ics  are presented for sixteen values of the 

thrust coefficient ranging from 0.001 t o  0.050. 

I. INTRODUCTION 

The development of a sui table  theory for  predicting the optimum performance 

of a rotor hovering out of ground ef fec t  (WE) has long been a central  problem 

of rotorcraf t  aerodynamics. 

hover OGE when occasion demands. 

develop a given amount of thrust  i s  the greatest  during hover OGE, the payload 

capabili ty of the rotorcraf t  i s  often l imited by the hovering performance of 

the rotor OGE. 

1/4 of the gross weight at take off .  Consequently, a rotor  which develops a 

thrust  5% l e s s  than the m a x i m u m  a t ta inable  while hovering OGE will lead t o  a 

Rotorcraft t y p i c d l y  are required t o  be able t o  

Since the power required fo r  a rotor  t o  

For a modern ro torcraf t ,  the payload i s  l i k e l y  t o  be 1/5 t o  

deficiency i n  payload capabili ty of 2$ t o  25%. 

importance t o  study the performance of a rotor hovering OGE. The basic task 

i n  such a performance study i s  the determination of a dis t r ibut ion of inflow 

velocity,  over a given rotor  disk, t ha t  leads t o  a minimum amount of power 

expenditure fo r  a given amount of thrust .  

conjunction with the well  known blade-element theory, permits the prediction 

of the performance l i m i t  and the required r ad ia l  dis t r ibut ion of circulation 

i n  order t o  approach t h i s  l i m i t .  It thus provides a ra t iona l  basis  for  blade 

design. 

It i s  thus of great prac t ica l  

This information, when used i n  

A hovering rotor  can be considered as a special  case of a propeller,  with 

zero advance velocity. Marine and a i r c ra f t  engineers have long been concerned 
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with propeller aerodynamics. 

propeller aerodynamicists, however, the propeller-induced velocity i s  s m a l l  

i n  comparison with the propeller 's  velocity of advance. 

propeller performance theories customarily make use of simplifications tha t  

In the majority of s i tuat ions of in te res t  t o  

As a resul t ,  

are valid only i f  the induced velocity i s  small. These theories therefore 

usually do not go over t o  rotor theories i n  a straightforward manner and 

rotor  performance predictions based on generalized propeller theories do not 

always correlate w e l l  with experimental data ( R e f .  1). 

In recent yews ,  the search for  be t t e r  methods of predicting rotor 

Performance i n  hover yielded a copious volume of l i t e r a t u r e  on the subject. 

Several recent a r t i c l e s  contain comprehensive bibliography (Ref. 2) of the 

ea r l i e r  m r k  as well as review and reassessment (Ref. 1) of "classical" 

theories. The br ie f  discussion given below provides a summary account of 

previous theories and present effor ts .  Only a few pertinent a r t i c l e s  are 

referred t o  here. I n  many cases, a large nurriber of a r t i c l e s  exis t  which are 

based on essent ia l ly  the same approach. 

then mentioned. 

Only one representative a r t i c l e  i s  

The ea r l i e s t  theory on propeller performance was the axial  momentum 

theory, based on the actuator disk (infinitely-bladed propeller) concept by 

Rankine (Ref. 3) and Froude (Ref. 4).  

propeller operates without any f r i c t iona l  drag on the blade and induces no 

rotat ion i n  the slipstream. Since the flow upstream of the propeller disk 

i s  i r ro ta t iona l ,  the tangential  velocity component at  the disk is  zero, and 

it follows from the Kutta-Joukowski theorem tha t  the disk cannot be subjected 

Within the context of t h i s  theory, the 

t o  a l i f t  force. Disregarding th i s  inconsistency, two well known conclusions 

were obtained: first,  an optimum propeller i s  one with a uniform axia l  

3 



veloci ty  a t  the propeller disk,  and second, when applied t o  a hovering ro tor ,  

t h e  minimum power coefficient i s  equal t o  the thrust  coefficient t o  the 3/2 

power divided by the square root of 2. 

information on the r ad ia l  dis t r ibut ion of c i rculat ion over the disk and 

The theory, however, provides no 

consequently no indication as t o  how the blades should be designed for optimum 

performance. 

In general, the energy loss due t o  the ro ta t iona l  motion i n  the slipstream 

of a propeller i s  s m a l l .  The neglect of the slipstream ro ta t ion  was therefore 

thought t o  be jus t i f ied  fo r  the purpose of predicting the performance of 

propellers. The actual performance of propellers,  however, generally does 

not m e e t  the expectation of the ax ia l  momentum theory even when the various 

loss factors ,  not including the slipstream rotat ion,  m e  taken in to  account. 

This deficiency i s  explained by the general momentum theory, which incorpo- 

r a t e s  a procedure t o  account f o r  some of the e f fec ts  of slipstream rotation. 

One of the major conclusions of the general momentum theory i s  that  the 

slipstream rotat ion,  though s m a l l  i n  terms of the energy content, exerts an 

important influence on the optimum distri’bution of inflow velocity over the 

propeller disk. 

given i n  Ref. 5 which also contains a presentation of e f for t s  directed toward 

A detailed presentation of the general momentum theory i s  

the study of helicopter rotors .  

information on the optimum dis t r ibut ion of c i rculat ion over the disk.  

The general momentum theory does provide 

The 

solutions as given i n  Ref. 5 ,  however, are approximate and only p a r t i a l l y  

account fo r  the e f fec ts  of slipstream rotat ion.  

The theory which represents the current s t a t e  of the a r t  for  routine 

calculation of propeller performance i s  the vortex theory. 

theory represents the wake t r a i l i n g  the blades by a d is t r ibu t ion  of concentric 

The basic  vortex 
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cylindrical  vortex sheets. These vortex sheets describe the rad ia l  variation 

of the blade circulation and thus imply an i n f i n i t e  nuniber of blades. 

effect  of a f i n i t e  number of blades i s  obtained approximately by Prandtl 

( R e f .  6) using a t i p  loss  factor. 

represents the t r a i l i n g  vortex sheets , for  optimum performance, by discrete 

helicoidal surfaces of constant hel ix  angle and moving as r ig id  surfaces. 

Goldstein's work formed the basis  of much of the subsequent analyses by Lock, 

Theodorsen, Lerbs, e tc . ,  (Refs. 8, 9 ,  10, and 11) tha t  proved t o  be suf f i -  

c ient ly  accurate f o r  predicting propeller performance. 

theory f o r  predicting hovering rotor  performance, however, yielded overly 

optimistic resu l t s  ( R e f .  1). 

wake contraction, the slipstream rotat ion,  and the associated non-uniform 

inflow are the factors tha t  contribute most t o  the inab i l i t y  of the vortex 

theory t o  predict  the hovering rotor performance accurately. This contention 

The 

An inrproved analysis by Goldstein (Ref. 7) 

The use of the vortex 

Reviews of the vortex theory suggest that  the 

i s  supported by recent resu l t s  obtained from the numerical computation of the 

ent i re  rotor-induced flow f i e ld .  

it i s  to  be noted tha t  the work of  Lerbs (Ref. 11) extends the vortex theory 

Before discussing the numerical approach, 

t o  heavily-loaded propellers where the effect  of wake contraction i s  important. 

Lerbs' work, though well known i n  marine engineering, has not been extended 

and applied t o  the study of rotor performance. A s  i s  the case of the general 

momentum theory, the work of Lerbs i s  based on cer ta in  simplifying assumptions 

tha t  cannot be ju s t i f i ed  f o r  a hovering r o t o r .  The modification o f  Lerbs' 

analysis fo r  rotor  applications i s  by no means straightforward. 

The continuing requirements of higher forward f l i gh t  speed and larger  

rotorcraf t ,  coupled with the need t o  keep the rotor  reasonably s m a l l  from 

v weight and operational f l e x i b i l i t y  considerations, led t o  the development of 
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rotors  with higher rotat ional  speed and disk loading. 

increased inaccuracy of the exis t ing theories i n  predicting the hovering 

performance. The most recent e f for t s  t o  overcome this d i f f i cu l ty  i s  the 

development of numerical. methods fo r  the integration of the Biot-Savart law; 

the use of which permits the computation of the en t i r e  flow f i e l d  induced by 

the rotor. 

only a knowledge of the inflow velocity over the prupeller disk. 

ture  of the Biot-Savart law, i n  order t o  es tabl ish the inflow velocity 

components at the disk, however, requires the computation of the en t i r e  vortex 

system a t  and t r a i l i n g  the disk. 

procedure and the nurriber of data points involved i n  each i te ra t ion  i s  large,  

the approach i s  time-consuming even by modern computational standards. To 

solve a problem where the propeller geometry, ra ther  than the blade circula- 

This resulted i n  

It i s  noted tha t  calculation of the ro tor  performance requires 

The quadra- 

Since the computation requires an i t e r a t ive  

t ion  dis t r ibut ion,  i s  specified, an additional i t e r a t ive  procedure i s  needed 

t o  establish the circulat ion dis t r ibut ion corresponding t o  the specified 

propeller geometry. Further, t o  obtain the propeller geometry tha t  would 

give the optimum performance, a parametric study involving a large number of 

geometries must be treated.  For t h i s  reason, although some success has 'been 

reported i n  the development of the Biot-Savart law approach, the u t i l i t y  of 

t h i s  approach for  design purposes i s  limited a t  the present. 

The purpose of t h i s  report  i s  twofold, (a) t o  present a simple theory, 

together with numerical r e su l t s ,  for  rotor performance and (b)  t o  clarif'y 

cer ta in  features of the performance problem pertinent t o  rotors hovering OGE. 

The theory presented here i s  similar t o  the general momentum theory described 

i n  Ref. 5 i n  tha t  the ro tor  i s  represented by an actuator disk. It i s  there- 

fore stibjected t o  some of the l imitations of the general momentum theory. I n  



part icular ,  the correction factor  fo r  f i n i t e  nuniber of blades m u s t  be 

estimated separately, fo r  example, by an extension of Lerbs' ( R e f .  lo) method 

for heavily loaded propellers. m e  present method, however, i s  more complete 

i n  that  i t  fu l ly  accounts for the effects  of slipstream rotation. 

improvement, which i s  not inportant i n  the case of a l i g h t l y  loaded propeller, 

has f i n i t e  contributions t o  thrust and power requirements of a rotor.  m e  

use of the present theory permits the calculation, i n  a straightforward 

manner, of the dis t r ibut ion of circulation and inflow velocity over the rotor 

disk for  the in f in i t e ly  bladed case. These distributions are, along with the 

figure of merit 

values of the thrust  coefficient.  

This 

and the optimum power coefficient,  presented f o r  several 
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SYMBOLS 

a = ul/T(R1, dimensionless axial velocity i n  the ultimate wake 

value of "a" a t  the rim of the ultimate wake A 

b = W,/n, dimensionless angular velocity i n  the ultimate wake 

B value of "b" a t  the r i m  of the ultimate wake 

H total head of the f l u i d  

H total head of the ambient f l u i d  
0 

t o t a l  head of the f lu id  i n  the ultimate wake H1 

k = rl/r, loca l  contraction r a t i o  

K = RJR, overal l  contraction r a t i o  

M f igure of merit,  Eq. (51) 

n a constant i n  the optimum performance c r i te r ion ,  Eq. (32) 

N = n/R1, a dimensionless constant 

nuniber of blades Nb 

P s t a t i c  pressure of the f l u i d  immediately upstream of the rotor  disk 

s t a t i c  pressure of the anibient f l u i d  PO 

s t a t i c  pressure of the f l u i d  i n  the ultimate wake p1  

a 



a 

PI 

P 

pC 

Q 

r 

R 

R1 

S 

s1 

T 

TC 

U 

1 U 

s t a t i c  pressure jump across the rotor disk 

power expended by the rotor 

power coefficient,  Eq. (50) 

torque on the rotor  

r ad ia l  posi t ion on the rotor  disk 

rad ia l  posi t ion i n  the ultimate wake 

radius of the rotor 

radius of the ultimate wake 

area of the rotor  disk 

area of the ultimate wake 

thrus t  developed by the rotor 

thrust  coeff ic ient ,  Eq. (49) 

axial velocity a t  the disk 

axial velocity i n  the ultimate wake 

d 
x = rl/Rl, dimensionless r ad ia l  posi t ion i n  the ultimate wake 

y = r /R ,  dimensionless r ad ia l  posit ion on the disk 

r circulat ion at  the rotor  disk 
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circulat ion of each blade rb 

w angular velocity of the f lu id  immediately downstream of the rotor  

disk 

1 w 

n 

P 

angular velocity of the f l u i d  i n  the ultimate wake 

angular velocity of the rotor  

density of the f lu id  
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11. FORMULATION OF TKE HOVERING ROTOR PROBLEM 

The equations governing the performance of hovering rotors  are derived 

The general flow below within the context of the general momentum theory. 

features are shown i n  Fig. La.. The ro tor  i s  represented'by an actuator disk 

of radius R and driven t o  ro ta te  about i t s  axis a t  a constant angular velocity 

hl i n  an incompressible, inviscid f lu id .  The flow i s  steady and symmetric 

about the axis of the actuator disk. 

is ,  however, non-zero i n  the slipstream. The f lu id  outside the slipstream i s  

i r ro t a t iona l  and i s  a t  r e s t  at in f in i ty .  The t o t a l  head of the f lu id  outside 

the slipstream i s  therefore equal t o  the s t a t i c  pressure of the f lu id  f a r  

upstream and i s  a constant. The actuator disk imparts an increase i n  t o t a l  

head to  the f lu id  passing through the disk i n  the form of an abrupt s t a t i c  

pressure increase and a change i n  the angular velocity of the f lu id  from the 

zero angular momentum value immediately upstream t o  some f i n i t e  value 

immediately downstream of  the disk. 

the axial velocity component t o  be continuous across the disk. 

velocity component i s  taken t o  be continuous across the disk within the 

context of the general momentum theory. 

The rotat ional  component of the velocity 

The l a w  of mass conservation requires 

The rad ia l  

The slipstream, i n  which the flow i s  ro ta t iona l  and possesses a higher 

t o t a l  head than the flow outside, contracts damstream of the disk and forms 

an ultimate wake far downstream of the disk. 

r ad ia l  velocity component vanishes and the flow properties are independent 

of the ax ia l  coordinate. 

a t  radius r at the disk, shown i n  Fig. la pass through the annular element 

dS1 = 2'rrrldrl i n  the ultimate wake. 

In the ultimate wake, the 

Let the flow through the annular element dS = 2rrrdr 

The subscripts "1" designate flow 
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conditions i n  the ultimate wake,  &e uns&scripted variables designate the 

corresponding flow conditions immediately downstream of the disk. 

The law of m a s s  conservation s t a t e s  t ha t  

ulrldrl = urdr 

The tangential  component of the equation of motion requires the angular 

momentum of the f l u i d  t o  be constant along streamtubes i n  the slipstream. 

Thus one has 

w r  2 = w r  2 
1 1  

The radial-component of the equation of motion requires the radial 

pressure gradient i n  the ultimate wake t o  be balanced by the centrifugal 

force on the f l u i d ,  since the r ad ia l  velocity component i s  zero i n  the 

ultimate wake. Thus 

Bernoulli 's equation, applied t o  the flow upstream of the disk gTives 

(4) 2 2  - = p + + p ( u  + v )  Ho - 

where the subscripts "o" designate flow conditions far upstream of the disk 

and p i s  the s t a t i c  pressure o f  f lu id  immediately urpstream of the disk,  

The t o t a l  head immediate downstream of the disk i s  

~ = p + p  I + + p ( u 2 + v 2 + w r )  2 2  

12 



where p'  i s  the pressure jump across the disk and u) i s  the angulw velocity 

of the f lu id  immediately downstream of the disk. 

equation t o  the flow downstream of the disk gives 

Equation (5) and (6) gives 

Applying Bernoulli ' s 

w2r2) 

The element of torque of the disk i s  equal t o  the flux of angular momentum 

imparted to  the f l u i d  passing through the annular disk element dS. Thus 

3 dQ = Zrrpuwr dr 

The element of power expended by the d isk  therefore i s  

dP = hdQ 

This element o f  power i s  a lso equal t o  the increase i n  t o t a l  head per unit 

time imparted t o  the f lu id  passing through the annular disk element, ?.,e,, 

dP = m(H1 - H O ) u d r  

Consequently 

2 2 =pmr =phwlrl H1 - Ho 



Putting Eq. (10) in to  Eq. (7) yields 

p ‘  = p ( 0  - +W) wr 2 

The element of thrust  developed by the ,d isk  i s  

dT = P’dS 

The t o t a l  thrust  developed and the total power expended by the en t i re  disk 

are expressible i n  terms of the veloci t ies  a t  the d isk  by using Eqs. (9) and 

(12) : 

and 

P = 2llpQ uwr3dr 
0 

T = 2rrp (n - $-w) Wr 3 d r  
0 

In terms of the veloci t ies  i n  the ultimate wake, the t o t a l  power i s ,  

using Eqs. (1) Y (2 )  Y and (13) 7 

A n  expression for  the t o t a l  thrust  i n  terms of the wake properties may be 

obtained by specializing the expression for  a propeller i n  forward motion 

given i n  Ref. 5 t o  the case of zero advance velocity: 
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Although the derivation presented i n  R e f .  5 requires cer ta in  assumptions not 

appropriate for  the hovering rotor case, it i s  shown i n  Appendix A of t h i s  

report t ha t  Eq. (16) i s  val id  for  the hovering rotor.  

Using Eqs. (4), ( 6 ) ,  and (10) , one obtains 

Equation (16) can therefore be re-written as 

Differentiating Eq. (17) with respect t o  r1 gives, a f t e r  using Eq. (3) 

and re-arranging terms 

2 
1 d'l 

2 drl &l 
- - = (. - wl) 

A t  the r i m  of the ultimate e,  rl = R1 and po = pl. Equation (17) thus 

gives 



111. CRITERION FOR OPTIMUM PERFORMANCE 

In  the ultimate wake where the radial velocity vanishes, the simple 

relationship between the pressure and the angular velocity,  Eq. (3), makes 

it possible t o  express the ax ia l  velocity ul as a function of the angulas 

velocity wl; i .e. ,  i f  wl(rl) i s  specified, then %(rl) follows by the 

quadrature of Eq. (19). Such a simple relationship does not ex is t  a t  the 

disk, where the rad ia l  velocity component i s  non-zero. Consequently, i n  

deriving a cr i te r ion  for  aptimum performance, it has not been possible t o  

consider the flow conditions at the disk directly.  In the following analysis, 

a c r i te r ion  for  optimum performance i s  established i n  terns  of the velocity 

distributions i n  the wake. These velocity dis t r ibut ions w i l l  subsequently 

be related t o  the velocity dis t r ibut ions a t  the rotor  disk and t o  the thrust  

and power coefficients of the rotor.  

Consider a given dis t r ibut ion of angular velocity wl(rl) Let t h i s  distri- 

bution be perturbed t o  w1(rl) + Awl, with &a1 given by 

where 8 << wl(C) and AC << 5 .  

exis t  perturbations i n  the pressure and the a x i a l  velocity i n  the ultimate 

wake as shown i n  Fig. lb .  

As a r e su l t  of t h i s  perturbation i n  wl, there 

From Eq. ( 3 ) ,  one has 

Tnus, t o  the f i rs t  order i n  bWl/wl, the perturbation i n  pl, which resu l t s  

16 



from the pertur'bation i n  wl, i s  

Placing Eq. (21) i n  Eq. (23) gives 

where only the lowest order term i n  c/wl and i n  AC/G are kept i n  each in te rva l  

of  in te res t .  

Using Eq. (l7), the perturbation i n  ul can be expressed as 

2 
pulAul = - Apl + p ( n  - wl) rl Awl 

Thus from Eqs (21) and (24) 

Using Eqs. (16) and (15) , the changes i n  thrus t  and i n  power due t o  the 

perturbation i n  w1 m e  
4 



and 

1Ip = mp66 (u1hl + WIAul) r1 3 drl 
0 

Using Eqs. (21), (24), and (26), one obtains 

AT = ~ P [ B  - W l ( 5 )  1 C3(EAC> 

and 

Equations (29) and (30) may be combined t o  express AP i n  the form 

where g(5) i s  a f’unction of 5 ,  the location where the angular velocity 

perturbation i s  introduced. Suppose tha t  an angular velocity perturbation 

i s  introduced a t  c,, with resul t ing changes i n  power and thrust  AP1 and AT1. 

Suppose a second angular velocity perturbation i s  introduced a t  5 

resul t ing changes i n  power and thrust AP2 and AT2. 

the values of sAc a t  5, and c,, the ne t  change i n  thrust due to  the two 

perturbations i s  made t o  zero, i. . , AT = AT1 + AT2 = 0 e 

the net cha.nge i n  power i s  

with 2 

By sui tably selecting 

Then, using Eq.. (31) , 

Since AT, ca.n be made e i ther  posi t ive o r  negative by choosing the sign of “ e ”  

18 



i n  Eq. (29) ,  it i s  possible t o  obtain a negative value fo r  AP i f  g(Cl) # g(C2). 

I n  other words, it w i l l  be possible fo r  the rotor  (with fixed R and 0) t o  

develop a given mount of thrust  while expending a smaller amount of power by 

a l te r ing  the given angular velocity dis t r ibut ion wl(rl). 

therefore i s  not optimum. 

This dis t r ibut ion 

It i s  obvious, therefore, tha t  the optimum dis t r ibut ion wl(rl) requires 

g(C1) = g(C2) . 
g(5)  i s  a constant. Let t h i s  constant be Izn. From Eqs. (29) and ( 3 O ) ,  the 

optimum performance c r i te r ion  i s  

In other words, the c r i t e r ion  for optimum performance i s  tha t  

A d i f f e ren t i a l  form of t h i s  performance c r i te r ion  i s  obtained by dif- 

ferenting both sides of Eq. (32) with respect t o  rle 

and Eq. (19), both containing the derivatives of u1 and w1 with respect t o  rl, 

and - , t o  be expressed as a function of permit each of the derivatives, - 
ul, wl, and rl. 

b = W,/n, and the dimensionless constant N = n/Rlr the two derivatives are 

The resul t ing equation 

dw d'l 

% 
I n  terms of dimensionless variables x = rl/Rl, a = ul/nR1, 

2 2 
da 
dx 

2ab(l  - b)[2a - a(4 - b) N + 2bx ] x - =  
a4 - 2a3N - a%(1 - 2'b) x2 + b2(1-b)2 x4 

and 

2 2  2 4, 
- =  db 
dx 

2b[a4 - a3(2-b) N + a%(3 - 2b) x - b (1 - b) x 
[a4 - 2a3N - a%(1 - 2b) x2 + ' b 2 ( 1  - b) 2 x4] x 

(33) 

(34) 

A t  the r i m  of the slipstream, a and b are re la ted by Eq. (20) which, i n  the 



non-dimensional form, i s  

A2 = B ( 2  - B) (35) 

where A and B are values of a and b respectively a t  x = 1. 

Taking the upper l i m i t  of integration t o  be R1 i n  Eq. (32) and using 

Eq. (35) , one obtains an expression fo r  N: 

For any given value of B (or A ) ,  the system of equations (33) t o  (36) 

determine functions a(x) and b(x) t ha t  give optimum rotor performance as 

well as the value of N. For a given value of B y  the value of A i s  determined 

by Eq. (35). The value of N depends on the flulctions a(x) and b(x)  and i s  

determined i n  an i t e r a t ive  procedure together with the f’unctions a(x) and 

b(x) . For the f i r s t  i t e ra t ion ,  an estimated value of  N i s  placed i n  Eqs. (33) 

and (34), which are solved for  a(x) and b(x) using a fourth order Runge-Kutta 

method for  simultaneous first order ordinary d i f fe ren t ia l  equations. m e  

calculation begins a t  the rim, x =1, where the boundary values A and B are 

known, and proceeds inward towards the axis,  x = 0. The resul ts  are used t o  

obtain a corrected value of N for  the subsequent i t e ra t ion .  

procedure continues until the qua 

differing insignif icant ly  from the input value of N i n  Eqs. (33) and (34) e 

The detailed computational procedures are presented i n  Appendix B. 

The i t e r a t ive  

ature of Eq. (36) yields a value of N 
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I V .  PERFORMANCE AND FLOW CONDITIONS AT THE ROTOR DISK 

For a given radius of the ultimate wake, R1, and a given rotor angular 

velocity n, the optimum performance functions a(x) and b(x) specify the 

optimum flow f i e l d  i n  the ultimate wake. The corresponding power expended 

and thrust  developed by the rotor  are determinant from Eqs. (15) and (18). 

The optimum circulation and the axial inflow velocity at the disk as well as 

the power and thrust  coefficients and the figure of merit of  the rotor can be 

computed based on the known functions a(x) and b(x) , provided tha t  a func- 

t iona l  relationship between r and rl can be established. 

rotor and propeller performance, i t  i s  customary t o  obtain a d i f fe ren t ia l  

form of the thrust  element by different ia t ing equation (18) : 

In  theories of 

dT = mp[$ u: + (a - $-wl)wlr:] rldrl 

Equating the r igh t  sides of Eqs . (12) and (37) gives 

[u: + (ZQ - wl) wlr:] rl 

(20 - W) w r  3 
- -  - d r  

drl 

Equations (2) and (38), together with the boundavy condition 

r = O  a t  r l = O  

(37) 

(39) 

determine a functional relationship between r and rl, including the overal l  

contraction r a t i o  K = R1/R, when the velocity distributions u1 and w1 i n  the 

wake are prescribed. 

Equation (37) obviously is  not the only expression tha t  s a t i s f i e s  Eq. (18); 

21 



f o r  any expression g(rl)drl which gives r1 g(rl)drl = 0 can be added t o  the 

r ight  side of Eq. (37) ,  and the result ing expression s t i l l  s a t i s f i e s  Eq. (18). 
0 

I n  fac t ,  it i s  shown i n  Appendix C t ha t  for  w1 bounded and r(rl) a one t o  one 

fbnction, no solution of Eq. (38) ex is t s  w'nich s a t i s f i e s  the boundary condi- 

t i o n  (39) . A more detai led discussion i s  given i n  Ref. 15. 

The function r(rl) can be obtained as a par t  of the solution of the 

complete f l o w  f i e l d  between the disk and the ultimate wake. 

equation governing the flow f i e l d  i s  e l l i p t i c  (Ref. 12) and it has been 

suggested (Ref. 13) t ha t  the exact contraction r a t i o  can be obtained only by 

the corrrplete solution of the governing equation. 

The d i f fe ren t ia l  

Such a corcrplete solution 

consti tutes a major task demanding a large amount of computational effor t .  

Accordingly, i n  the present work, an approach which requires neither the use 

of Eq. (38) nor the solution for the en t i re  flow f i e l d  i s  developed. I n  this 

approach, the loca l  contraction r a t i o  k = rl/r i s  taken t o  be independent of 

the radial posit ion r (or rl). 

It i s  recognized tha t  i n  general the loca l  contraction r a t i o  depends 

on the r ad ia l  posit ion.  The resu l t s  of Ref. 10, however, indicate tha t  for 

heavily loaded free-running propellers,  the contraction r a t i o  i s  nearly 

independent of the radial posit ion,  except near the axis of the propeller, 

where the dependence of the contraction r a t i o  on the r ad ia l  posit ion has only 

s m a l l  e f fec ts  on the propeller 's  erformance. Thus it i s  expected tha t  the 

assumption of a constant contraction r a t i o  i s  reasonable fo r  rotor  performance 

studies . 
With k(r)  = K, one has 

r = rl/K and dr = drl/K 
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5 m  Eqs. (1) and (2) 'become 

and 

( 41) 
2 u = u1K 

2 w = w1K 

The value of K can be determined by  equating the r igh t  sides of the two t o t a l  

thrust  equations, (14) and (18) . Using Eqs. (4.0) t o  (42) and rearranging 

terms, one obtains the following expression for  K: 

1 
-2  
- 

0 

Integrating by par ts  gives 

2 

2 1 drl &l u r d r  = 1 1 1  
0 

Using Eqs. (19) and (23) and integrating by par ts  yields 

(43) 

(44) 

Putting Eq. (45) in to  Eq. (43) gives 

K = 3-1 .  ( 46) 

which is the value predicted by the axial momentum theorem. 

The axial inflow velocity and the circulation a t  the disk &e related t o  
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the axial and angular velocities in the ultimate wake by 

1 .(.) = 9 ul(rl) 

2 T(r)  = mu, (r )r 1 1 1  and 

The thrust and power coefficients are 

P - 
pc - nR2p (m) 

given by 

[a2 + (2 - b) bx2] xdx 

The figure of merit is given by 

3/2  
TC 

,p P 
M =  

C 

V. RESULTS AND DISCUSSIONS 

The optimum performance characteristics of the hovering rotor are 

presented in Table 1. 

merit and the non-dimensional c 

values of the thrust coefficient between 0.001 and 0.050. 

thrust coefficient was considered to bracket the normal operating range of 

hovering rotors.  

The minimum power coefficient, the optimum figure of 

culation at the disk edge are given for 16 

This range of 

The optimum radial distributions of circulation on the disk,are presented 
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i n  Fig. 2 for  the 16 values o f t h e  thrust  coefficient.  

fo r  s m a l l  values of Tc, the optimum circulat ion i s  nearly independent of the 

r ad ia l  posit ion except near the a x i s .  For higher values of Tc, the deviation 

of the optimum circulat ion from a constant value extends over a larger region 

and the magnitude of the deviation i s  greater. 

It canbe  seen tha t  

The corresponding optimum dis t r ibut ions of the axial inflow velocity a t  

the disk a re  presented i n  Fig. 3. It can be seen tha t  a similar pat tern 

exis ts  for  the axial  inflow velocity as fo r  the circulation. That i s ,  the 

optimun axia l  inflow velocity i s  nearly uniform for  s m a l l  values of T 

near the axis. The deviation of optimum axia l  inflow velocity from a 

constant value i s  more s ignif icant  for the higher T values. The slope of 

the curves u(r) i s  zero a t  r = 0 as expected. 

except 
C 

C 

I n  Ref. 5, an approximate solution for  the hovering rotor problem i s  

given based on the assumptions tha t  the r ad ia l  pressure gradient i n  the 

ultimate wake i s  negligible and tha t  the non-dimensional veloci t ies  a t  the 
U N w 

d i sk  G(y) = E and W(y) = w are  

9 

and 

0.r my2 u =  2 2  
m + Y  

N 2m2 
2 2  w =  

m + Y  
( 53) 

where m i s  a constant and y = r/R. 

are compared t o  the present resu l t s  for  optimum performance i n  Figs. 4 and 5 

for  the case T = 0.01. 

Fig. 6. 

The approximate f’unction z(y) and G(y) 

A similar comparison fo r  the circulat ion i s  given i n  
C 

The comparisons show that  the approximate resu l t s  deviate s ign i f i -  
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cantly from the present resu l t s ,  par t icu lar ly  i n  the inboard region of the 

disk. The deviations are  more severe for  larger values of T . The approxi- 

mate resu l t s  give excessively high value of u) and zero value of u a t  the a x i s ,  

as i s  shown t o  be incorrect i n  Appendix C. The present solution gives a 

moderate value of W and a f i n i t e  value of u a t  the a x i s .  

C 

The variation of pressure i n  the ultimate wake i s  plot ted against the 

r ad ia l  posit ion i n  Fig. 7, again fo r  the case T = 0.01. As can be seen from 

Eq. (l7), i f  the pressure gradient i n  the ultimate wake i s  neglected, as was 

done i n  Ref. 5 ,  the ax ia l  velocity vanishes at the axis. If the pressure 

gradient i s  taken in to  account, as i s  i n  the present analysis, the ax ia l  

velocity i s  f i n i t e  a t  x = 0. The value of (po - P , ) / ~ ( Q R ~ ) ~  = 0.0123 a t  

x1 = 0 ,  given i n  Fig. 7, corresponds to  a value of ul = 0.157 L?R,, which i s  

comparable to  the maximum axia l  velocity i n  the wake, 0.207 QRl .  The effect  

of the pressure gradient i n  the ultimate wake on the thrust  developed by the 

rotor  i s  represented by the second term on the r igh t  s ide of Eq. (16). 

neglect of the pressure gradient would lead to ,  according t o  Fig. 7, a 

prediction of the thrust  coefficient approximately 2% higher than the optimum 

for the case Tc = 0.01. 

C 

The 

More important i s  the fac t  t ha t  the optimum radia l  

ributions of c i rculat ion and ax ia l  inflow velocity predicted by the 

approximate theory, which neglects the pressure gradient, contain s ignif icant  

errors 

In  Fig. 8, the optimum power coefficient i s  presented as a function of the 

thrust  coefficient. 

eff ic ient  i s  shown i n  Fig. g. 

mate r e su l t  of Ref. 5 and the idea l  f igure of merit. The figure shows that 

The dependence of the figure of merit on the thrust  co- 

The present resu l t  i s  compared with the approxi- 

the approximate method of Ref. 5 predicts the rotor  performance ‘somewhat more 
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optimistically than the present theory. 

present method predict  performance substantially lower than ideal .  The 

deviation from the idea l  performance increases with increasing thrust  

coefficient.  

Both the approximate method and the 

The present resu l t s  are primarily concerned with an in f in i t e ly  bladed 

rotor .  

by extending Lerbs' work (Ref. 10) on heavily loaded, f ree  running propellers 

to hovering rotors .  

optimum dis t r ibut ion of circulation i s  provided by modifying P r a n d t l ' s  

approximate method (Ref. 6) of calculating the " t ip  loss" factor and applying 

the resu l t  t o  the hovering rotor case. The procedure is  outlined i n  Appendix 

D. 

Tc = 9.010. 

2 ,  4,  and 6 blades are respectively 0.00759, 0.00865, and .OOg06 .  

corresponding corrected power coefficients are .000547, 0.000624, and 

0.000655. 

without the t i p  loss  correction, the power coefficients for  the in f in i t e ly  

bladed rotor are respectively ( a t  Tc = 0.00759, 0.00865, and O e O O g 0 6 )  

O.CO0479, 0.000585, and 0.000627. 

and 0.972. 

The e f fec t  of a f i n i t e  number of blades may be determined, f o r  example, 

An estimate of the effect  of number of blades on the 

The resu l t s  are shown i n  Figure 10 for  rotors with 2, 4 ,  and 6 blades a t  

Based on these resu l t s ,  the corrected thrust  coefficients f o r  

The 

The figures of merit are 0.855, 0.911, and 0,931. I n  comparison, 

The figures of merits are 0.975, 0.973, 
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V I .  CONCLUSIONS 

A theory for  the optimum performance of a rotor hovering out of ground 

ef fec t  i s  presented. The formulation of the problem i s  based on the general 

momentum theory of an actuator d i sk  ( in f in i t e ly  bladed rotor) and makes use 

of the fact  that  i n  the ultimate wake, far downstream of the rotor  disk, the 

rad ia l  component of the velocity vanishes and there ex is t s  a simple relat ion 

between the r ad ia l  dis t r ibut ion of s t a t i c  pressure and tha t  of rotat ional  

velocity component. The present analysis, which leads t o  an optimum perform- 

ance c r i te r ion ,  i s  more complete than previous analyses i n  that  the present 

work filly accounts for  (1) the e f fec t  of slipstream rotat ion and (2) the 

existence of a rad ia l  pressure gradient i n  the ultimate wake. 

Numerical resu l t s  are presented fo r  the r ad ia l  distributions of circula- 

t ion  and the axial  inflow velocity at the disk, the optimum power coefficient 

and the optimum figure of merit for  sixteen values of the thrust  coefficient 

covering the normal range of i n t e re s t  i n  rotorcraf t  application. 

are made between previous approximate resu l t s  and the present more exact 

resu l t s .  

Comparisons 

everal conclusions of the present study are summarized below: 

1. The customarily accepted expression for the d i f f e ren t i a l  element of 

thrust  i n  terms of the flow conditions i n  the ultimate wake, used i n  previous 

analyses t o  r e l a t e  the wake flow t o  the flow a t  the d i sk ,  i s  inconsistent w i t h  

the fac t  tha t  a rad ia l  pressure gradient ex is t s  i n  the ultimate wake. 

2. The existence of the r ad ia l  pressure gradient i n  the ultimate wake 

has a s ignif icant  e f fec t  on the optimum rad ia l  dis t r ibut ion of circulation 

and the optimum performance of the rotor  i n  the range of thrust  coefficient of 
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i n t e r  e s t  t o  ro t  or  c r  af t app li c a t  ion . 
Numerical resu l t s  obtained based on the present theory indicate that  3 .  

previous approximate theories yielded overly optimistic resu l t s  on the per- 

formance of hovering rotors.  

increases with increasing thrust  coefficient.  

investigators comparing experimental data with theoret ical  resu l t s ,  the 

existing theories generally overestimate the hovering rotor  performance i n  

the higher t h r u s t  coefficient range. Thus the correction factor based on the 

present theory may be u t i l i zed  to  improve the previous predictions. 

The inaccuracy i n  the approximate resu l t s  

A s  has been noted by ea r l i e r  

4. With the assumption of uniform contraction, the contraction r a t i o  i s  

1/,,/??- , the value predicted by the ax ia l  momentum theory. 

5. The approach developed i s  potent ia l ly  useful fo r  predicting the 

optimum performance and the related dis t r ibut ion of c i rculat ion of heavily 

loaded propellers and rotors i n  very general types of ai-symmetric flow, 

such as the shrouded propeller and the ducted fan flows. The e f fec t  of f i n i t e  

number of blades can be determined separately by modif'ying available theories,  
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TABLE 1 

OPTIMUM PEXFORMANCE CHARCICTEBISTICS 

2 
Tc x 10 

0.1 

0.2 

0 -3 

0.4 

0.5 

0.6 

0.7 

0 -8 

0.9 

1 .o 

1.5 

2 .o 

2.5 

;.0 

4 .O 

5 -0 

pC 103 M 

. 0 2246 
,06377 

. J-3-75 

.1815 

.2545 

* 3355 

4239 

* 5193 

6213 

.7296 

1.3569 

2.1134 

2.9865 

3.9682 

6.2379 

8.8958 

0 9954 

9917 

' 9885 

9854 

.9824 

9796 

.9769 

.9743 

9717 

* 9692 

.9574 

* 9463 

* 9359 

-9259 

,9086 

.8887 

B x 10 2 

.a26 

.4091 

.6189 

* 831.7 

1 .Ob73 

1.2657 

1.4866 

1.710 

1 * 9358 

2.1640 

3 e 3393 

4 e 569 

5.8510 

7 e 1841 

10.0024 

13 -0246 
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APPENDIX A 

TOTAL 'JXRUST I N  TERMS OF THE WAKE PROPERTIES 

Consider a spherical  control volume of radius 63 centered at the center of 

the ro to r  d isk .  

Sb, Sa being the par t  of the control surface where the slipstream leaves the 

control volume and S 

momentum theorem gives, for  the present steady flow problem, 

Let t h i s  control surface be divided in to  two pa r t s ,  Sa and 

being the remaining par t  of the control surface. The b 

where p and u are  the s t a t i c  pressure and the ax ia l  velocity of the f lu id ,  

E i s  the unit outward normal and i i s  the uni t  vector i n  the ax ia l  direction. 

A t  large distances from the rotor disk,  the effect  of the rotor on the f l u i d  

outside the slipstream i s  equivalent to t ha t  of a sink located a t  the center 

of the rotor disk. The strength of the sink i s  equal t o  the volume ra t e  of 

flow passing through the disk and i s  f i n i t e .  

C the magnitude w of the velocity vector goes t o  zero; i .e. ,  w 3 -  where C i s  

a constant. Consequently (Po - p) = 3 pw2 4 2 P C  on Sb as fa + a. The second 

in tegra l  i n  Eq. (A-1) thus gives -p (m12) as E + a, and equation (A-1) 

In  the l imi t  as 63 + 00, on % 
& 

4 fa2 

0 

becomes 



APPENDIX B 

COMPUTATIONAL PROCEDURES 

Equations (33) and (34) consti tute a system of t w o  f irst  order ordinary 

Equation (36) d i f fe ren t ia l  equations for  the functions a(x,  N) and b(x,  N) e 

i s  an auxiliary equation re la t ing  N t o  the f’unctions a(x,  N) and b(x, N) . 
Equation (35) re la tes  the values of a and b a t  x = 1. 

A = a(1) or B = b(1) i s  given, the functions a and b are obtainable fron 

Eqs. (33), (34), and (36) by using an i t e r a t ive  method t o  establish the value 

of N. 

Thus, i f  e i ther  

For a selected value of B ,  the value of A i s  calculated using Eq. (35). 

The procedure for the i t h  i t e r a t ion  i s  as follows: 

1. With a selected value of N(i), designated Nit), Eqs. (33) and (34) 

are  solved fo r  a(i) (x) and b(i) (x) using a fourth order Runge-Kutta method 

for simultaneous solution of the d i f f e ren t i a l  equations, The computation 

begins a t  x = lwhere  the values of a and b are  known and proceeds inboard, 

a t  intervals  of Ax = 0.01, t o  x = 0. 

( i) @2. With the calculated a(i) (x) and b(i) (x) , a new value of N , 
designated No::), i s  computed by numerical quadrature of the in tegra l  i n  

Eq, (35) using a Newton-Cotes formula. 

(i’ i s  calculated and compared t o  ( 5) (i) 
- Nin - Nout 

i s  less  than 

3. The difference F - 
(i) . I f  the magnitude of N i p ) ,  then the computation Nin  

i s  terminated 

function a(x) 

i s  determined 

and the functions a(i) and b(i) are accepted as the optimum 

and b(x) for  the given value of B. 

for  the subsequent i t e ra t ion .  

( i +l) Otherwise a value of Nin 
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The selection of the value Nin for the i n i t i a l  i t e r a t ion  i s  c r i t i ca l .  

A s  is  shown i n  Fig. 3, the function a(x) i s  posi t ive fo r  optimum performance. 

If  the value Nin 

may vanish at some points i n  the i n t e r v a l 0  < x < 1. 

i s  impoperly selected, the calculated f'unction a(1) (x) 

The numerical quadrature 

of the in tegra l  i n  Eq. (36) then becomes inaccurate. In actual computation, 

it was found tha t  a value of Nin 

value of N may lead t o  computational d i f f icu l t ies .  

only s l i gh t ly  smaller than the correct 

A reasonable value of N i F )  i s  obtained by using the form of a and b 

given by Glauert's approximate expressions, Eqs. (52) and (53) . That i s ,  

2 
5"I 

In2 + x2 
a =  

and 

2 

(B-2) 
C2m 

m2 + x2 
b =  

To satisf'y Eq. (35) fo r  all values of m, one has C1 = C2 = 2. 

and (B-2) i n  Eq. (36) gives 

Placing (B-1) 

9 

It was found tha t  a l inear  i t e r a t ion  procedure, i .e. ,  l e t t i n g  

i+l i - leads t o  very slow convergence. I n  the Nin - 
the second i t e r a t ion ,  the value of Nin (2) is  taken t o  

subsequent i t e ra t ions ,  Nin (i+l) i s  obtained using the 

actual  computation, for  

'be 0.98 Nin (1) . For all 

secant method, i ,e . ,  
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From Eqs (17) and (22) , one obtains at  x = 0 

a2(0) = 2 b2xdx 
0 

From Eq. (32) i t  can be shown tha t  

a b(0) = 2 - - N 

03-51 

Equations (B-5) and (B-6) provide convenient means f o r  checking the 

accuracy of the solutions. 

In  order t o  obtain the functions a(x) and b(x) fo r  given values of the 

thrust  coefficient,  instead of given values of B ,  i t  i s  necessary t o  i t e r a t e  

for  different  values of B. 

no computational d i f f icu l ty .  

This i t e r a t ion  i s  straightforward and involves 

34 



APPESDIX C 

RESTRIC!lTONS DUE TO RADIAL PFESSURE GRADIENT I N  THE WAKE 

Equations (19) and (m) give the following equation: 

Since w1 i s  bounded and non-negative, the f i r s t  term on the r igh t  side of 

Eq. (C-1) approaches zero as rl 4 0. 

The in tegra l  i n  Eq. (C-1) i s  posi t ive and increases as rl 4 0.  

i s  a point S and a posi t ive constant K such tha t  for  rl < S,  

Thus u i s  non-zero a t  the a x i s  rl = 0 .  1 
Hence there 

Consequently, from Eq. (38), one has for  rl S 

Singe r(rl) i s  a one t o  one 

for  rl 5 S. Equation (c-3) 

a n  

f’unction, neither W nor (22 - W) can be negative 

may therefore be rewritten as 

where M i s  a constant such tha t  w1 < M f o r  rl < S. Let r’ be given by 
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ana r 1  = rl(S) at r1 = s 

then, from Eq. (C-4), one has 

However, Eqs. (C-5) and (c-6) give 

r 12 = rl 2 (s)  - K tn(s/rl) 

Consequently r' = o a t  rl = s em[- K 3 > 0. Since r 5 r /  for  rl < s ,  

-Js) 
one has r = 0 a t  a point rl 2 S em[- 

a t  rl = 0 therefore cannot be sa t i s f ied .  

] > 0. The condition r = 0 

It i s  noted tha t ,  i f  the r ad ia l  pressure gradient i n  the ultimate wake i s  

neglected, as was done i n  Ref. 5, then the last  term i n  Eq. (C-1) vanishes, 

Consequently, ul_ = 0 a t  rl = 0 and the condition r = 0 at  rl = 0 can be 

fied.  The consideration of the effects  of the slipstream rotat ion,  

however, requires the pressure gradient term t o  be retained. 
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APPENDIX D 

ESTIMATED TIP LOSSES BASED OM PRANDTL'S METHOD 

Prandtl 's approximate formula for  the t i p  loss correction factor for  the 

blade circulation i s  

where f = , g being the distance from the r i m  of the t r a i l i n g  vortex sheet 

and h being the normal distance between two adjacent vortex sheets at the rim 

of the t r a i l i n g  vortex system. 

Prandtl 's formula was derived for propellers with f i n i t e  velocity of 

advance and negligible slipstream contraction. "he basic  concept however 

has been u t i l i zed  t o  study the hovering rotor problem (Ref. 14). 

Eq, (D-1) t o  the ultimate wake, one has 

Applying 

g = R1 - rl 

and 

where Nb i s  the number of blades. Consequently, 

The t o t a l  circulation of the ro tor  i s  therefore 
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The thrust and the power are ,  in terms of rb , 

Thus the thrust and power coefficients are 

where 

= f ydy 
0 

pC 

, one has With the contraction factor k = - 1 

f l  

y = x  

and b 
w 1 .  
n 2  
- = -  

Thus, Eqs. (D-7) and (D-8) give 



and 
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Figure 2(a) .- O p t i m u m  r a d i a l  d i s t r ibu t ion  of c i rcu la t ion  
for various values of th rus t  coeff ic ient .  
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Figure 2(b) .- Optimum radia l  distribution of circulation 
for  various values of thrust  coefficient. 
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Figure 3.- O p t b u m  radial distribution of axial inflow 

velocity for various values of thrust coefficient. 
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ultimate wake for  Tc = 0.010. 
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